Translating TB Therapy Response:

Application of Mechanistic PKPD Modelling and Pharmacometrics

Rada Savic, PhD
Associate Professor of Pharmacometrics
Dept. of Bioengineering and Therapeutics Sciences
Division of Pulmonary and Critical Care Medicine
Schools of Pharmacy and Medicine
University of California, San Francisco
Motivation (Tools)

- Apply state of the art tools to choose most promising regimens to be moved to late stage clinical development

- Provide toolbox:
 - to aid in seamless transition for all phases of drug development
 - to optimally combine drugs in the regimen
 - to optimally choose dosing regimen (dose, frequency and duration)
 - to allow for examination of other relevant science for potential impact on clinical trial outcomes
 - Host directed therapies
 - Lung TB pathology
Motivation (Pharmacology and PKPD)

- Murine model in TB is excellent model for studying TB
- Pharmacological principles are translatable
 - Small (and large) molecule pharmacokinetics
 - Drug combinations optimization (solid experience from other diseases)
 - Drug Related Bacterial Kill is the same
 - Preclinical/Clinical Endpoints are similar
Cases where Relapsing Mouse Model underperformed

- Combining Rifamycins with Fluoroquinolones (ReMOX, Rifaquin)
- Replacement of Rifampin and Rifapentine (Study 29/29X)
Measuring the treatment-shortening effect of a test regimen relative to a control regimen in mice

Colored symbols represent the proportion of mice relapsing after receiving the indicated regimen for various durations (error bars represent the 95% CI).
Treatment-shortening effect of substituting moxifloxacin for isoniazid in the 1st-line regimen in BALB/c mice

A 1 to 1.5-month treatment shortening effect is observed in our standard model.

Data from 5 experiments (4 JHU, 1 CSU)

Moxifloxacin (PMZ) Outperforms Isoniazid (PHZ) in Murine Models

A durable cure without relapse was achieved significantly earlier with M-containing regimens than H-containing regimens.

7 Response after dosing mice PMZ vs PHZ QD or BID 5/7 days, Rosenthal, M. I. et al. AJRCCM 2008:178(9)
Substitution of H with M in Clinical Trial Failed

ReMOX

RIFAQUIN Trial

Jindani, A. et al. NEJM 2014:371(17)
Case 2: Rifapentine (PHZ) Outperforms Rifampin (RHZ) in Murine Models

A durable cure without relapse was achieved significantly earlier with P-containing regimens than R-containing regimens.

Response after dosing mice RHZ vs PHZ QD 5/7 days

Data: study Rosenthal AAC 2012
Substitution of P for R in Correspondent Clinical Trial Failed

- Open label randomization: RHZE vs PHZE, both at 10 mg/kg QD 5/7 days for 8 weeks
- Comparison of probability of conversion on solid media (P=0.50)
 - 83.3% R (of 174 patients) vs 86.4% P (of 198 patients)
- Comparison of probability of conversion on liquid media (P=0.65)
 - 65.1% R (of 206 patients) vs 67.9% P (of 183 patients)

Conclusion: The P regimen was not significantly more active than a standard R regimen at the end of intensive phase by the surrogate endpoint of culture status.

Dorman, E.S. et al. JID 2012:206
Host

- Host Immune System
- Bacteria-related Death
- Formation of Disease Pathology
- Nude vs Balb C vs Kramnik
- Impact of Host on PK

Regimen

- Pharmacokinetics
- Drug—Drug Interactions
- Combinatorial Regimen
- Dose
- Frequency
- Penetration & PK in lesions
- PKPD Monotherapy and Combinational therapy
- Additive/Synergistic/
- Competitive effect

Bug

- Bacterial Growth
- Infection Model
- Formation of Disease Pathology
- Initial Bacterial Burden
- Cure Boundary
Systems Pharmacology Model

Lesion formation

Macrophage activation

k\text{_growth} \rightarrow k\text{_mutation} \rightarrow \text{Elimination}

Gut

Plasma

Lymph

Macrophage

Lesion

Lung

iDC

mDC

Naive T-cells

Precursor T-cells

Helper T-cells
Minimal Systems Model Limited by Available Measurements in the Murine Model
Mechanistic PKPD Model
Minimal Mechanistic TB Response Model informed by measurable data

- **Bacterial growth** (Incubation period)
- **Immune System Response** (Nude vs BalbC mouse)
- **Drug Pharmacokinetics** (PK)
- **Pharmacokinetics-Pharmacodynamics** (PKPD, longitudinal CFU)
- **Disease Pathology** (Lesion penetration)
- **Definition of Cure Boundary** (Cure = no bacteria)
Goals & Data

1. **To develop the Tool** (mechanistic PKPD model for regimens of interest)
 - Various combinations of rifamycins with moxifloxacin with backbone of ZH or ZE, or ZHE
 - Includes PK on drugs of interest (R,P,M)
 - PKPD of dose ranging R and P monotherapy and in combo with other drugs
 - Not full combinatorial design

2. **To utilize the Tool to perform Clinical Trial Simulations**
 - Assumptions
Baseline Model for Bacterial Growth

Raw PD Data without Treatment in Balb/c & Nude Mice

Gompertz Model

\[
\frac{dB}{dt} = K_g \times \left(1 - \frac{B}{B_{max}}\right) \times B - K_d \times B
\]

- **B**: bacterial number
- **Bmax**: maximal bacterial number
- **t**: time of bacterial growth, day
- **K_g**: bacterial growth rate, day\(^{-1}\)
- **K_d**: bacterial death rate, day\(^{-1}\)
Bacterial Baseline Model with Immune Function

BALBc = immune competent mice (ImmC)
Nude = immune deficient mice (ImmD)

Assumption: Immune response can be estimated using the difference in CFU counts between the immunocompetent and immunodeficient mice.
Raw PD Data with and without Treatment in Balb/c & Nude Mice

Immune competent, no treatment
Immune compromised, no treatment
Immune competent, RHZE
Immune compromised, RHZE

\[
\frac{dB}{dt} = K_g \times \left(1 - \frac{B}{B_{max}} \right) \times B - K_{IND} \times B - (E_{drug} + K_{DOI} + K_d) \times B
\]

- B: bacterial number
- B_{max}: maximal bacterial number
- t: time of bacterial growth, day
- K_g: bacterial growth rate, day^{-1}
- K_d: bacterial death rate, day^{-1}
- E_{drug}: drug effect
- K_{DOI}: immune effect when drug is on board
- K_{IND}: 0, when drug is on board
Inclusion of Immune Effect With & Without Drug Treatment

\[dB \, dt = K_g \times \left(1 - \frac{B}{B_{max}}\right) \times B - K_{IND} \times B - (E_{drug} + K_{DOI} + K_d) \times B \]

<table>
<thead>
<tr>
<th>Time (weeks)</th>
<th>Immune Effect (day-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.6</td>
</tr>
<tr>
<td>15</td>
<td>0.7</td>
</tr>
<tr>
<td>20</td>
<td>0.8</td>
</tr>
</tbody>
</table>

No Drug

Immune killing (In CFU/day)

| No Drug | 0.61 |
| With Drug | 0.048 |

Difference

12.7 times

Implications: Infection Model

- No Drug
- With Drug

Parameters

- KIND
- KDOI
Infection Model & Immune System

Nude Mice
BalbC Mice
PK Models in Mice for R, P & M

<table>
<thead>
<tr>
<th>Drug</th>
<th>PK Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifapentine (P)</td>
<td>PK after 3 weeks (5/7) of daily doses ranging from 5 to 20 mg/kg</td>
<td>1 Compartment Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Linear Clearance</td>
</tr>
<tr>
<td>Rifampin (R)</td>
<td>PK after 3 weeks (5/7) of daily doses ranging from 10 to 40 mg/kg</td>
<td>2 Compartment Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Linear Absorption</td>
</tr>
<tr>
<td>Moxifloxacin (M)</td>
<td>PK of single dose with dose ranging from 100 to 400 mg/kg</td>
<td>2 Compartment Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear Clearance</td>
</tr>
</tbody>
</table>

![Graphs showing PK models for Rifapentine, Rifampin, and Moxifloxacin](image)
TB Drug Effect Model in Mice

• Drug Effect on Bacterial Growth

\[
\frac{dB}{dt} = K_g \times \left(1 - \frac{B}{B_{\text{max}}}\right) \times B \times (1 - E_{\text{drug}}) - K_d \times B - K_{\text{DOI}} \times B
\]

Bacterial Growth Bacterial Death Immune Killing

• Drug Effect on Bacterial Death

\[
\frac{dB}{dt} = K_g \times \left(1 - \frac{B}{B_{\text{max}}}\right) \times B - (E_{\text{drug}} + 1) \times K_d \times B - K_{\text{DOI}} \times B
\]

Bacterial Growth Bacterial Death Immune Killing

Drug Effect Model

Linear Model: \(\text{EFF} = \text{LIN}_{\text{EFF}} \times \text{Conc} + \text{EFF}_0 \)

Non-Linear Model: \(\text{EFF} = \frac{\text{Conc}^y}{\text{EC}_{50}^y + \text{Conc}^y} \)

Emax Model: \(\text{EFF} = \frac{E_{\text{max}} \times \text{Conc}^y}{\text{EC}_{50}^y \times \text{Conc}^y} \)
Concentration & Response Relationship for R & P alone and wi HZ(E)

Composite Drug Effect of Combination Treatment

Extra Efficacy Term for the Additional Drugs: E_0

$$E_{drug} = E_0 + \left(\frac{E_0 + E_{max}}{EC_{50}^\gamma + C^\gamma} \right)$$

<table>
<thead>
<tr>
<th>Structural Model</th>
<th>Estimate</th>
<th>RSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIF alone EC_{50} (mg/L)</td>
<td>1.79</td>
<td>26%</td>
</tr>
<tr>
<td>γ</td>
<td>0.23</td>
<td>18%</td>
</tr>
<tr>
<td>Emax</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>RHZ E_{HZ}</td>
<td>0.018</td>
<td>56%</td>
</tr>
<tr>
<td>RHZE E_{HZE}</td>
<td>0.036</td>
<td>68%</td>
</tr>
<tr>
<td>RPT alone EC_{50} (mg/L)</td>
<td>0.50</td>
<td>46%</td>
</tr>
<tr>
<td>γ</td>
<td>0.86</td>
<td>19%</td>
</tr>
<tr>
<td>Emax</td>
<td>1.00</td>
<td>fixed</td>
</tr>
<tr>
<td>PHZ E_{HZ}</td>
<td>-0.015</td>
<td>53%</td>
</tr>
</tbody>
</table>
Composite Drug Effect of Combination Treatment

Extra Efficacy Term for the Additional Drugs: E_0

$$E_{\text{drug}} = E_0 + \left(\frac{E_0 + E_{\text{max}}}{EC_{s0}^\gamma + C^\gamma} \right)$$

$$E_{0, \text{moxifloxacin}} = E \times C_{\text{moxifloxacin}}$$

<table>
<thead>
<tr>
<th>Moxifloxacin effect with HZ*(E)</th>
<th>estimate</th>
<th>RSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{conc} (g/L, linear)</td>
<td>3.2797</td>
<td>6%</td>
</tr>
<tr>
<td>additional effect (d$^{-1}$)</td>
<td>0.0344</td>
<td>30%</td>
</tr>
</tbody>
</table>

The effect of moxifloxacin on bacterial death was studied in combination with isoniazid and pyrazinamide (and ethambutol).
Translational PK/PD Platform for TB Drugs

Mouse model

Dose mice mg/kg R, P, M

Plasma PK models

Volume plasma 2

K23

K32

absorption (non/linear)

elimination ((non)linear)

Volume plasma 1

CFU counts at inoculation

PD model

$K_s \times \left(1 - \frac{B}{B_{\text{max}}}\right)$

TB compartment

Dosing schedule HIGHRIF2, 29, 29x, ReMox, Rifapatin, TBTC study 31

Human translation model

absorption transit, food

Plasma PK models

Volume plasma 2

K23

K32

Drug drug interactions

elimination (linear)

Volume plasma 1

CFU counts at start treatment

PD model

$\frac{F_{\text{rat}}}{F_{\text{human}}} \times \left(1 - \frac{B}{B_{\text{max}}}\right)$

TB compartment

$\left(K_{\text{human}} + K_d\right) \times B$

Disease pathology
Clinical Trial Summary

<table>
<thead>
<tr>
<th>Trial</th>
<th>Objective</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGHRIF2 (Phase II)</td>
<td>To optimize the dose of R-containing regimen for two months (10, 15 and 20 mg/kg)</td>
<td>Higher doses are needed for evaluation</td>
</tr>
<tr>
<td>Study 29X (Phase IIb)</td>
<td>To compare the potency of P-containing regimen vs the standard 6-month regimen containing R</td>
<td>The P-containing regimen was not significantly more active than the standard R-containing regimen.</td>
</tr>
<tr>
<td>REMox-TB (Phase III)</td>
<td>To test the noninferiority of two M-containing regimens (4-month) as compared with the standard 6-month regimen</td>
<td>Noninferiority for the two M-containing regimens was not shown as 4-month treatment</td>
</tr>
<tr>
<td>RIFAQUIN (Phase III)</td>
<td>To test the noninferiority of two M-containing regimens (4-month and 6-month) as compared with the standard 6-month regimen</td>
<td>The 6-month regimen was as effective as the control regimen. The 4-month regimen was not noninferior to the control regimen.</td>
</tr>
<tr>
<td>PanACEA MAMS (Phase IIb)</td>
<td>To find an optimal dose level of R for the standard 6-month regimen</td>
<td>A dose of 35 mg/kg rifampin was safe and reduced the time to culture conversion in liquid media.</td>
</tr>
<tr>
<td>Study 31 (Phase III)</td>
<td>To determine whether two P-containing 4-month regimens are as effective as the standard 6-month regimen</td>
<td>Pending (ongoing trial)</td>
</tr>
</tbody>
</table>
Can we use the translational model to predict long term efficacy?
Can we predict PK/PD relationships (exposure response) in patients in order to select the optimal dose of drugs in a regimen?
Extended Retention of R in Lung Cavities

The association between sterilizing activity and drug distribution into tuberculosis lesions

Prideaux B. et al. Nat. Med. 2015 Oct. 21
A 4-fold higher EC\textsubscript{50} for P in the cavity compartment was predicted compared to that in plasma.

In the cavities, the drug mediated-killing effect may be much weaker.
Summary

- Mechanistic PKPD model is solid tool for TB regimen optimization
- It incorporates bacterial dynamics, immune response, multidrug PKPD and lung pathology
- Clinical efficacy of R/P + M regimens are well described/predicted with this tool from CFU mouse data (not sterilizing mouse model)
- For successful prediction, info on lung penetration, accurate immune response & human PK is necessary
- This tool needs to be further evaluated with new regimens (PaMZ, JPaMZ, PaJL)
- Need for PKPD factorial design and experiments at not so common doses & schedules to enable full learning
Acknowledgements

• Eric Nuermberger (JHU)
• Imke Bartelink (UCSF)
• Nan Zhang (UCSF)
• Emily Kendal (JHU)
• Kelly Dooley (JHU)
• Veronique Dartois (Rutgers)
• Natasha Strydom (UCSF)