BTZ043: a development update

Michael Hoelscher, Julia Dreisbach, Sarah Konsten, Norbert Heinrich
Division of Infectious Diseases and Tropical Medicine
Medical Center of the LMU
Contents of this talk

• Update on BTZ043 preclinical
• Phase 1 & 2a Plans
• BTZ043 inhibits the MTB cell wall synthesis by blocking DprE1, which is necessary for the synthesis of arabinofuranose, a component of arabinogalactan and arabinomannan.
Clinical development plan BTZ043

2006 Filing of BTZ043 patent by Hans-Knöll-Institute (HKI) / Institut Pasteur / V. Makarov
2009 Publication in Science and sublicence to Clondiag / Alere for preclinical development
2010 Filing of PBTZ169 patent by EFPL, S. Cole and V. Makarov
2013 Alere stopps BTZ/PBTZ development
2014 HKI is sole patent holder for BTZ043
2015 Cooperation agreement between HKI + LMU
 German Center for Infection Research (DZIF) funds finalisation of preclinical development
2017 BfArM (German EMA) scientific advice – Preclinical toxicity complete
 9 Mio € funding for further clinical development until phase IIa by BMBF, DZIF, EDCTP
2017 GMP-Synthesis and GMP drug manufacturing, in Q4 SAD Phase Ia
2018 MAD phase Ib
2019 Phase IIa EBA within PanACEA
Efficacy of BTZ043 in chronic infection model
BALB/c mice dose escalation

Therapy: Start 3 weeks after infection
- Drug dosages [mg/kg body weight]:
 - BTZ043 50, 100, 250, 500, 1000
 - vehicle (1% CMC)
 - INH 25
- Oral administration 5x / week

Aerosol Infection
175 CFU H37Rv

Time pi [weeks]:
- 3
- 7
- 9
- 11

CFU in lungs
Mouse Models for BTZ043 and PBTZ169

- **Makarov & Cole**
 - Chronic mouse model
 - EFPL

- **DZIF**
 - Chronic mouse model
 - Borstel & Munich

Graph 1:
- Log$_{10}$ CFU
- Time after infection [weeks]
- D0, NT, INH, RIF, BTZ, PBTZ
- Vehicle: INH 25 mg/kg before treatment
- Doses: 50 mg/kg BTZ 043, 100 mg/kg BTZ 043, 250 mg/kg BTZ 043, 500 mg/kg BTZ 043, 1000 mg/kg BTZ 043
- Spleen and Lung comparison

Graph 2:
- CFU [log$_{10}$] / lung
- Time after infection [weeks]
- 3, 7, 9, 11
- Infection Research
Mouse Models for BTZ043 and PBTZ169

![Graph showing CFU (log_{10} / lung) over time after infection (days) for different treatments.]

- Vehicle
- 50 mg/kg BTZ043
- 100 mg/kg BTZ043
- 250 mg/kg BTZ043
- 500 mg/kg BTZ043
- 1000 mg/kg BTZ043
- INH 25 mg/kg
Safety + Phase 1 plans

- All preclinical toxicology models uncritical
- NOAEL in rats 170 mg/KG
- NOAEL in mini-pigs 360 mg/KG
Safety + Phase 1 plans

- All preclinical toxicology models uncritical
- NOAEL in rats 170 mg/KG
- NOAEL in mini-pigs 360 mg/KG

Phase 1a (2017):
- 200 mg
- 400 mg
- 800 mg
- 1600 mg
- 3200 mg

Phase 1b:
- Two well tolerated doses from phase 1a
From Phase 2 onward: join PanACEA

WP1: Phase Ia
High RIF
max. tolerated dose RIF$_{high}$

Optimal PZA dose defined through modelling of existing data

WP2: Q203 Phase Ila
HR$_{high}$

14+ 14 SMART

Alternative Backbone + Q203
(pending external funding)

WP3: STEP Phase II b/c
Control: HRZE
HR$_{high}$Z$_{high}$E

HRZQ203

HR$_{high}$Z$_{high}$Q203

One potential multi-arm PHASE III

Future studies

High RIF
Standard Regimen Optimization

High PZA

Q203
Phased funded by Qurient

BTZ043

Animal Tox
Safety Pharmacology

DZIF

Development of alternative regimen

Ongoing studies by GTBA, TBTC, ACTG, MRC may lead to a novel regimen that can be used as an alternative backbone
Classical Phase 2a study design

- Pre-Treatment
- Randomization

Day 1
- HRZE control
- IMP dose 1
- IMP dose 2
- IMP dose 3

Day 14
PanACEA SMART 14+14 study concept

Day 1
- HRZE control

Day 14
- IMP dose 1
- IMP dose 2
- IMP dose 3

Pre-Treatment
Randomization
2nd Randomization
PanACEA SMART 14+14 study concept

Day 1
- Pre-Treatment
- Randomization
 - IMP dose 1
 - IMP dose 2
 - IMP dose 3

Day 14
- IMP dose 1 + HRZ
- IMP dose 1 + novel backbone
- IMP dose 2 + HRZ
- IMP dose 2 + novel backbone
- IMP dose 3 + HRZ
- IMP dose 3 + novel backbone

Day 28
- HRZE control
- IMP dose 1 + HRZ
- IMP dose 1 + novel backbone
- IMP dose 2 + HRZ
- IMP dose 2 + novel backbone
- IMP dose 3 + HRZ
- IMP dose 3 + novel backbone

Pre-Treatment
Randomization
2nd Randomization
PanACEA SMART 14+14 study concept

PK – 1st dose

- IMP dose 1
- IMP dose 2
- IMP dose 3

PK – steady state

- IMP dose 1 + HRZ
- IMP dose 1 + novel backbone
- IMP dose 2 + HRZ
- IMP dose 2 + novel backbone
- IMP dose 3 + HRZ
- IMP dose 3 + novel backbone

PK – with companion drugs (DDI)

- HRZE control

Day 1

- HRZE control
- IMP dose 1
- IMP dose 2
- IMP dose 3

Day 14

- HRZE control
- IMP dose 1 + HRZ
- IMP dose 1 + novel backbone
- IMP dose 2 + HRZ
- IMP dose 2 + novel backbone
- IMP dose 3 + HRZ
- IMP dose 3 + novel backbone

Day 28

Pre-Treatment

Randomization

2nd Randomization

accumulation enzyme induction

interaction
PanACEA SMART 14+14 study concept

PK – 1st dose

- IMP dose 1
- IMP dose 2
- IMP dose 3

PK – steady state

- IMP dose 1 + HRZ
- IMP dose 1 + novel backbone
- IMP dose 2 + HRZ
- IMP dose 2 + novel backbone
- IMP dose 3 + HRZ
- IMP dose 3 + novel backbone

PK – with companion drugs (DDI)

Day 1

- Pre-Treatment
- Randomization

Day 14

- HRZE control

Day 28

- 2nd Randomization

Probe drug cocktail pre-dose

steady state with companion drugs

PK – 1st dose

PK – steady state

PK – with companion drugs (DDI)
Acknowledgements

University of Munich: Michael Hölscher, Julia Dreisbach, Elmar Saathoff, Sarah Konsten

Research Center Borstel: Christoph Hoelscher, Kerstin Walter

German Center for Infection Research (DZIF)

German Ministry for Education and Research (BMBF)

European and Developing Countries Clinical Trials Partnership (EDCTP)