Tuberculosis Drug Accelerator

Overview of Activities and Portfolio
“who, why, what, how, by when and where are we now”
Steve Berthel
What is the Tuberculosis Drug Accelerator?

- The TBDA is a groundbreaking partnership between:
 - 8 Pharmaceutical companies
 - 5 Major Universities
 - 2 Research Institutes
 - 1 National Institute
 - 1 non profit PDP

- With participation from:
 - Bill and Melinda Gates Foundation

- Managed through:
 - The CEO roundtable at the New Venture Fund
TBDA is a quasi-biotech

Somewhat Biotech like
- Discovery, preclinical and early clinical capabilities
- Multiple projects at multiple centers covering different modes of action
- Funding and portfolio management oversight

Fairly Unique
- Comprised of normally competitive organizations that share information and resources at an unprecedented level
- Investigating a single disease from many, many angles
- Output has global access requirements
Why have a TBDA?

- TB is one of the world’s **leading infectious killers**, disproportionately affecting developing countries:
 - 1.4 million deaths in 2015
 - 10.4 million new infections in 2015
 - 480,000 MDR TB cases in 2015
- First-line therapies for TB are **antiquated and inadequate**, taking 6 months to cure patients
- The current six month regimen contributes to **high treatment default rates** that can lead to:
 - increased transmission
 - drug resistance
 - death
- The world needs a **shorter, safer** TB drug regimen

Why have a TBDA?

- Limited investment in TB biology and drug discovery
- Lack of understanding of how to improve therapy
- Few well validated targets
- Poor assays to screen for drugs
- No new first line drugs in 50 years (safety of recent entries limit use)
- Resistance to only true sterilizing and treatment shortening agent
- Limited Candidates
What should we focus on?

- Current TB regimens drive down bacterial levels quickly, but require months of treatment to rid the body of all TB.
- The only way to overcome this persistence is through a shorter more effective regimen.
- **GOAL**—To generate multiple, mechanistically distinct TB candidates sufficient to advance a drug regimen to a **one month clinical POC by 2024**.
- Need to create a balanced portfolio:
 - Novel mechanisms
 - Sequestered sites (granulomas, cavities)
 - Tolerant sub-populations
 - Safety
 - Resistance
How will this be accomplished?

- The current research paradigm is ineffective
- No New first-line TB drug regimens in 50 years
How will this be accomplished?

- By a new approach that addresses bottlenecks in historic TB drugs development
- In this way only the best candidates advance
TBDA organization

- 17 current members
- 8 subteams
TBDA Discovery/Preclinical Development

- **Discovery**
 - Target or Cell-based Screening
 - Lead Identification
 - Lead Optimization
 - Preclinical development

- **Preclinical**
 - Clinical Phase I
 - Clinical Phase II
 - Clinical Phase III

Timeline:
- 2012-2013: Discovery
- 2014: Lead Identification
- 2015: Lead Optimization
- 2016: Preclinical development
- 2017: Clinical Phase I
- 2018: Clinical Phase II
- 2019: Clinical Phase III

Key Points:
- **2019**
 - New preclinical candidates
- **2024**
 - 1 month, 3-drug regimen proof of concept
TBDA Discovery/Preclinical Capabilities

Discovery

- Target or Cell-based Screening
 - **Lead Identification**
 - **Lead Optimization**
 - **Preclinical development**

Preclinical

- Clinical Phase I
- Clinical Phase II
- Clinical Phase III

Clinical

- Libraries
 - Pharma partners (Sanofi, Merck, Bayer, AbbVie, Lilly, AstraZeneca, GSK, Pfizer)
 - Other (MMV, BioFocus)

- Target
 - ID & validation (Weill Cornell, Texas A&M)
 - Crystallography (Texas A&M)
 - Screening (IDRI, Texas A&M)

- Whole cell
 - Replicating, multiple C source (Weill Cornell, IDRI, NIH)
 - Non-replicating (Weill Cornell)
 - Low pH (Weill Cornell, IDRI, NIH)
TBDA Discovery/Preclinical Capabilities

- Medicinal Chemistry (GSK, Merck, Sanofi, Lilly, AbbVie, UCT, Dundee, CROs)
- Animal Models
 - Acute/Chronic BalbC (GSK, Sanofi, CSU)
 - Kramnik (CSU)
 - Marmoset (NIH)
- PK, Tox
 - Caseium penetration (Rutgers)
 - Metabolomics (Weill Cornell)
 - ADME, PK (Pharma, CROs)
 - In vitro/in vivo Tox (Pharma, CROs)
TBDA Discovery/Preclinical Capabilities

- **Lead(s) selected**
 - Efficacy in advanced and/or combination models (Pharma, CSU, NIH, non-TBDA collaborators)
 - In vitro tox (CROs)
 - Non-GLP tox studies (CROs)

- **Preclinical Candidate Selection** (TB Alliance, Gates Foundation, Pharma)

- **Preclinical Candidate Profiling**
 - IND enabling studies (Pharma, CROs)
 - CMC (Pharma, CROs)

- **Clinical**
 - Study design (TB Alliance, Pharma)
 - Combination study design (TB Alliance)
 - IND Preparation (TB Alliance, Pharma)
Screens
- Whole cell phenotypic screening against corporate collections complete
- Conditional screening (carbon source, pH, low O₂) continues
- Special library screening continues
- Biochemical (target-based) screening continues

Hits
- >200 compound series identified to date
- ~10 currently under triage
- ~20 currently under hit assessment
Lead Identification

- ~30 projects in hit to lead stage
- ~60% with known targets
 - MmpL3
 - QcrB
 - RNA polymerase

Pie chart showing the distribution of projects across different pathways:
- Metabolism and Respiration: 29%
- Cell Wall: 11%
- Lipid metabolism: 7%
- Information Pathways: 39%
- Unknown: 11%
- Other: 3%
Lead Optimization
- ~10 projects in Lead Optimization
- Almost all with known targets
 - DprE1
 - MmpL3
 - InhA
Preclinical Development

- 3 projects from the TB Alliance have identified candidates
 - DprE1 inhibitor TBA-7371
 - Oxazolidinone TBI-223
 - Diarylquinoline TBAJ-587
- All scheduled for P1 in next 18 m
How can the TBDA and CPTR better connect?

- Align meetings
 - Back to back if possible (TBDA meets semi-annually, 1 US based, 1 rest of world)
 - Assure no overlap- encourage co-participation when possible
- Provide clinical data on “front runners” to instruct preclinical back-up projects
- Provide clinical data to help refine, and make more predictive, TB animal models
In Conclusion

- The TBDA is a novel collaboration of 17 research organizations with the goal of discovering multiple mechanistically distinct TB candidates sufficient to advance a drug regiment to a 1 month POC by 2024
- Excellent progress has been made to date, with 3 preclinical candidates identified
- Partnerships such as the TBDA show how industry and others can work together in new ways to support global health innovation
- The TBDA model is being applied to other disease areas that lack incentives for research or require combination drug therapies
- Opportunities exist to use clinical data to inform preclinical projects